- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Covino, Tim (1)
-
Emanuel, Ryan E. (1)
-
Gooseff, Michael N. (1)
-
Herzog, Skuyler (1)
-
McGlynn, Brian (1)
-
McGlynn, Brian L. (1)
-
Miniat, Chelcy F. (1)
-
Nippgen, Fabian (1)
-
Payn, Robert A. (1)
-
Singh, Nitin K. (1)
-
Ward, Adam S. (1)
-
Wondzell, Steven M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Stream solute tracers are commonly injected to assess transport and transformation in study reaches, but results are biased toward the shortest and fastest storage locations. While this bias has been understood for decades, the impact of an experimental constraint on our understanding has yet to be considered. Here, we ask how different our understanding of reach‐ and segment‐scale transport would be if our empirical limits were extended. We demonstrate a novel approach to manipulate experimental conditions and observe mass that is stored at timescales beyond the traditional reach‐scale window of detection. We are able to explain the fate of an average of 26% of solute tracer mass that would have been considered as “lost” in a traditional study design across our 14 replicates, extending our detection limits to characterize flowpaths that would have been previously unmeasured. We demonstrate how this formerly lost mass leads to predicting lower magnitudes of gross gains and losses in individual reaches, and ultimately show that the network turnover we infer from solute tracers represents an upper limit on actual, expected behavior. Finally, we review the evolution of tracer studies and their interpretation including this approach and provide a proposed future direction to extend empirical studies to not‐before‐seen timescales.more » « less
-
Singh, Nitin K.; Emanuel, Ryan E.; Nippgen, Fabian; McGlynn, Brian L.; Miniat, Chelcy F. (, Water Resources Research)
An official website of the United States government
